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A 49-year-old patient notices a painless rash on his shoulder but does not seek care. 
Months later, his wife asks him to see a doctor, who diagnoses a seborrheic keratosis. 
Later, when the patient undergoes a screening colonoscopy, a nurse notices a dark 
macule on his shoulder and advises him to have it evaluated. One month later, the 
patient sees a dermatologist, who obtains a biopsy specimen of the lesion. The find-
ings reveal a noncancerous pigmented lesion. Still concerned, the dermatologist re-
quests a second reading of the biopsy specimen, and invasive melanoma is diag-
nosed. An oncologist initiates treatment with systemic chemotherapy. A physician 
friend asks the patient why he is not receiving immunotherapy.

What if every medical decision, whether made by an intensivist 
or a community health worker, was instantly reviewed by a team of 
relevant experts who provided guidance if the decision seemed amiss? 

Patients with newly diagnosed, uncomplicated hypertension would receive the 
medications that are known to be most effective rather than the one that is most 
familiar to the prescriber.1,2 Inadvertent overdoses and errors in prescribing would 
be largely eliminated.3,4 Patients with mysterious and rare ailments could be di-
rected to renowned experts in fields related to the suspected diagnosis.5

Such a system seems far-fetched. There are not enough medical experts to staff 
it, it would take too long for experts to read through a patient’s history, and con-
cerns related to privacy laws would stop efforts before they started.6 Yet, this is 
the promise of machine learning in medicine: the wisdom contained in the deci-
sions made by nearly all clinicians and the outcomes of billions of patients should 
inform the care of each patient. That is, every diagnosis, management decision, 
and therapy should be personalized on the basis of all known information about 
a patient, in real time, incorporating lessons from a collective experience.

This framing emphasizes that machine learning is not just a new tool, such as 
a new drug or medical device. Rather, it is the fundamental technology required 
to meaningfully process data that exceed the capacity of the human brain to com-
prehend; increasingly, this overwhelming store of information pertains to both 
vast clinical databases and even the data generated regarding a single patient.7

Nearly 50 years ago, a Special Article in the Journal stated that computing would 
be “augmenting and, in some cases, largely replacing the intellectual functions of 
the physician.”8 Yet, in early 2019, surprisingly little in health care is driven by 
machine learning. Rather than report the myriad proof-of-concept models (of retro-
spective data) that have been tested, here we describe the core structural changes 
and paradigm shifts in the health care system that are necessary to enable the full 
promise of machine learning in medicine (see video).

M achine Le a r ning E x pl a ined

Traditionally, software engineers have distilled knowledge in the form of explicit 
computer code that instructs computers exactly how to process data and how to 
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make decisions. For example, if a patient has 
elevated blood pressure and is not receiving an 
antihypertensive medication, then a properly pro-
grammed computer can suggest treatment. These 
types of rules-based systems are logical and in-
terpretable, but, as a Sounding Board article in the 
Journal in 1987 noted, the field of medicine is “so 
broad and complex that it is difficult, if not im-
possible, to capture the relevant information in 
rules.”9

The key distinction between traditional ap-
proaches and machine learning is that in ma-
chine learning, a model learns from examples 
rather than being programmed with rules. For a 
given task, examples are provided in the form of 
inputs (called features) and outputs (called labels). 
For instance, digitized slides read by pathologists 
are converted to features (pixels of the slides) 
and labels (e.g., information indicating that a 
slide contains evidence of changes indicating 
cancer). Using algorithms for learning from ob-
servations, computers then determine how to 
perform the mapping from features to labels in 
order to create a model that will generalize the 
information such that a task can be performed 
correctly with new, never-seen-before inputs (e.g., 
pathology slides that have not yet been read by a 
human). This process, called supervised machine 
learning, is summarized in Figure 1. There are 
other forms of machine learning.10 Table 1 lists 
examples of cases of the clinical usefulness of 
input-to-output mappings that are based on peer-
reviewed research or simple extensions of exist-
ing machine-learning capabilities.

In applications in which predictive accuracy is 
critically important, the ability of a model to 
find statistical patterns across millions of fea-
tures and examples is what enables superhuman 
performance. However, these patterns do not 
necessarily correspond to the identification of 
underlying biologic pathways or modifiable risk 
factors that underpins the development of new 
therapies.

There is no bright line between machine-
learning models and traditional statistical mod-
els, and a recent article summarizes the relation-
ship between the two.36 However, sophisticated 
new machine-learning models (e.g., those used 
in “deep learning” [a class of machine-learning 
algorithms that use artificial neural networks 
that can learn extremely complex relationships 
between features and labels and have been shown 

to exceed human abilities in performing tasks 
such as classification of images]37,38) are well 
suited to learn from the complex and heteroge-
neous kinds of data that are generated from 
modern clinical care, such as medical notes en-
tered by physicians, medical images, continuous 
monitoring data from sensors, and genomic data 
to help make medically relevant predictions. 
Guidance on when to use simple or sophisticated 
machine-learning models is provided in Table 2.

A key difference between human learning and 
machine learning is that humans can learn to 
make general and complex associations from 
small amounts of data. For example, a toddler 
does not need to see many examples of a cat to 
recognize a cheetah as a cat. Machines, in gen-
eral, require many more examples than humans 
to learn the same task, and machines are not en-
dowed with common sense. The flipside, how-
ever, is that machines can learn from massive 
amounts of data.39 It is perfectly feasible for a 
machine-learning model to be trained with the 
use of tens of millions of patient charts stored 
in electronic health records (EHRs), with hundreds 
of billions of data points, without any lapses of 
attention, whereas it is very difficult for a human 
physician to see more than a few tens of thou-
sands of patients in an entire career.

How M achine Le a r ning C a n 
Augmen t the Wor k of Clinici a ns

Prognosis

A machine-learning model can learn the patterns 
of health trajectories of vast numbers of patients. 
This facility can help physicians to anticipate 
future events at an expert level, drawing from 
information well beyond the individual physician’s 
practice experience. For example, how likely is 
it that a patient will be able to return to work, 
or how quickly will the disease progress? At a 
population level, the same type of forecasting 
can enable reliable identification of patients who 
will soon have high-risk conditions or increased 
utilization of health care services; this informa-
tion can be used to provide additional resources 
to proactively support them.40

Large integrated health systems have already 
used simple machine-learning models to auto-
matically identify hospitalized patients who are at 
risk for transfer to the intensive care unit,17 and 
retrospective studies suggest that more complex 
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Figure 1. Conceptual Overview of Supervised Machine Learning.

As shown in Panel A, machine learning starts with a task definition that specifies an input that should be mapped 
to a corresponding output. The task in this example is to take a snippet of text from one language (input) and pro-
duce text of the same meaning but in a different language (output). There is no simple set of rules to perform this 
mapping well; for example, simply translating each word without examining the context does not lead to high-quali-
ty translations. As shown in Panel B, there are key steps in training machine-learning models. As shown in Panel C, 
models are evaluated with data that were not used to build them (i.e., the test set). This evaluation generally pre-
cedes formal testing to determine whether the models are effective in live clinical environments involving trial de-
signs, such as randomized clinical trials.

A Preparing to Build a Model

Task Definition

Conceptual task: Translate text into another language
More precise task: Convert short snippets of text from English to Spanish

Machine learning starts with a task definition that
specifies inputs and corresponding outputs.

After defining the task, a data set from instances
in which the task has already been performed
is collected.

The raw data are preprocessed to produce examples
of inputs consisting of a set of features and an output,
referred to as a label.  In this example, the features are
numerical tokens that correspond to words in the raw
text (e.g.,“chest” is represented by the token <100>).

The set of processed examples is divided into two sets.
The first, the training data set, is used to build the
model. The second, the test set, is used to assess
how well the model performs.

During model training, an example from the training
set is sent through a machine-learning system,
which provides a mathematical function that
converts features to a predicted label. A simple
example is a linear function, y'=ax1+bx2+c, where 
y' is the predicted label, x1 and x2 are the features, 
and a, b, and c are parameters. The model para-
meters are initially randomly assigned, and in the 
first iteration, the predicted label y' is generally
unrelated to the ground-truth label.

C Evaluating a Model

Training a ModelB

Training example
Machine-Learning

Model
Prediction for

example

Label for example

Data Collection

Raw data: Transcripts from clinical encounters in which a medical
translator participated

Data Preparation

Example of raw input: 
“I started feeling pain across

my chest.”

Example of features:
[<1>, <58>, <145>, <3>, <5>, <67>, 

<22>, <15>, <100>]

Example of raw output: 
“Empecé a sentir un dolor por todo

el pecho.”

Example of label: 
[<934>, <1024>, <2014>, <955>,
<1001>, <1500>, <1643>, <1923>,
<203>]

Test examples
Machine-
Learning
Model

Predictions
for test set

Labels for
test set

1

2

34

4. Repeat with new
example

3. If the prediction was
incorrect, the training
procedure specifies how
to update model param-
eters to make the model
more likely to make the
correct prediction for this
example and similar examples

1. Example is run
through the model

2. Predicted label is
compared with
ground-truth label

In the key step of machine learning (step 3), 
an algorithm determines how the parameters need 
to be modified to make the prediction more likely 
to match the ground truth. The system iterates 
through all the examples in the training data, 
potentially multiple times, to complete training.

The test set is then run through the final
model. Statistics are computed, and the predictions
of the test set are compared with the ground-truth
labels.

To apply the model, new input examples, which
have not been previously labeled, can be run
through the model. However, the model learns
patterns from data only in the training set, so if
new examples are sufficiently different from those
in the training data, the model may not produce
accurate predictions for them.
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and accurate prognostic models can be built with 
raw data from EHRs41 and medical imaging.42

Building machine-learning systems requires 
training with data that provide an integrated, 
longitudinal view of a patient. A model can learn 
what happens to patients only if the outcomes 
are included in the data set that the model is 
based on. However, data are currently siloed in 
EHR systems, medical imaging picture archiving 
and communication systems, payers, pharmacy 
benefits managers, and even apps on patients’ 
phones. A natural solution would be to system-
atically place data in the hands of patients them-
selves. We have long advocated for this solution,43 
which is now enabled by the rapid adoption of 
patient-controlled application programming in-
terfaces.44

Convergence of a unified data format such as 
Fast Healthcare Interoperability Resources (FHIR)45 

would allow for useful aggregation of data. Pa-
tients could then control who had access to their 
data for use in building or running models. Al-
though there are concerns that technical inter-
operability does not solve the problem of seman-
tic standardization endemic in EHR data,46 the 
adoption of HTML (Hypertext Markup Lan-
guage) has allowed Web data, which are perhaps 
even messier than EHR data, to be indexed and 
made useful with search engines.

Diagnosis

Every patient is unique, but the best doctors can 
determine when a subtle sign that is particular 
to a patient is within the normal range or indi-
cates a true outlier. Can statistical patterns de-
tected by machine learning be used to help 
physicians identify conditions that they do not 
diagnose routinely?

How complex is the prediction task?

Simple prediction tasks are defined as those that can be performed with high accuracy with a small number of predictor 
variables. For example, predicting the development of hyperkalemia might be possible from just a small set of vari-
ables, such as renal function, the use of potassium supplements, and receipt of certain medications.

Complex prediction tasks are defined as those that cannot be predicted accurately with a small number of predictor vari-
ables. For example, identification of abnormalities in a pathological slide requires evaluation of patterns that are not 
obvious over millions of pixels.

In general, simple prediction tasks can be performed with traditional models (e.g., logistic regression), and complex 
tasks require more complex models (e.g., neural networks).

Should the prediction task be performed by clinicians who are entering the data manually, or should it be performed by  
a computer using raw data?

In addition to classifying a prediction task as simple or complex, consider how the model will be used in practice. If a 
model will be used in a bedside scoring system (e.g., the Wells score for assessment of the probability of pulmonary 
embolism), then using a small number of variables curated by humans is preferable. In this case, traditional models 
may be as effective as more complex ones.

If a model is expected to automatically analyze noisy data without any intervening human curation or normalization, 
then the task becomes complex, and complex models become generally more useful.

It is possible to write a set of rules to process raw data to a smaller set of “clean” features, which might be amenable to 
a traditional model if the prediction task is simple. However, it is often very time-consuming to write these rules and 
to keep them updated.

How many examples exist to train a model?

Simple prediction tasks generally do not require many examples to learn from in order to build a model.

The training of complex models generally requires many more examples. There is no predetermined number of exam-
ples, but at least multiple thousands of examples are needed to construct complex models, and the more complex 
the prediction task, the more data are generally required. Specialized techniques do exist to reduce the number of 
training examples that are necessary to construct an accurate model (e.g., transfer learning).

How interpretable does a model need to be?

Simple prediction tasks are interpretable because the number of features evaluated by the model is quite small.

Complex tasks are inherently harder to interpret because the model is expected to learn to identify complex statistical 
patterns, which might correspond to many small signals across many features. Although this complexity allows for 
more accurate predictions, it has the drawback of making it harder to succinctly present or explain the subtle pat-
terns behind a particular prediction.

Table 2. Key Questions to Ask When Deciding What Type of Model Is Necessary.
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The Institute of Medicine concluded that a 
diagnostic error will occur in the care of nearly 
every patient in his or her lifetime,47 and receiv-
ing the right diagnosis is critical to receiving 
appropriate care.48 This problem is not limited to 
rare conditions. Cardiac chest pain, tuberculosis, 
dysentery, and complications of childbirth are 
commonly not detected in developing countries, 
even when there is adequate access to therapies, 
time to examine patients, and fully trained pro-
viders.49

With data collected during routine care, ma-
chine learning could be used to identify likely 
diagnoses during a clinical visit and raise aware-
ness of conditions that are likely to manifest 
later.50 However, such approaches have limita-
tions. Less skilled clinicians may not elicit the 
information necessary for a model to assist 
them meaningfully, and the diagnoses that the 
models are built from may be provisional or in-
correct,48 may be conditions that do not manifest 
symptoms (and thus may lead to overdiagno-
sis),51 may be influenced by billing,52 or may 
simply not be recorded. However, models could 
suggest questions or tests to physicians53 on the 
basis of data collected in real time; these sug-
gestions could be helpful in scenarios in which 
high-stakes misdiagnoses are common (e.g., 
childbirth) or when clinicians are uncertain. The 
discordance between diagnoses that are clinical-
ly correct and those recorded in EHRs or reim-
bursement claims means that clinicians should 
be involved from the outset in determining how 
data generated as part of routine care should be 
used to automate the diagnostic process.

Models have already been successfully trained 
to retrospectively identify abnormalities across a 
variety of image types (Table 1). However, only 
a limited number of prospective trials involve 
the use of machine-learning models as part of a 
clinician’s regular course of work.19,20

Treatment

In a large health care system with tens of thou-
sands of physicians treating tens of millions of 
patients, there is variation in when and why pa-
tients present for care and how patients with 
similar conditions are treated. Can a model sort 
through these natural variations to help physi-
cians identify when the collective experience 
points to a preferred treatment pathway?

A straightforward application is to compare 

what is prescribed at the point of care with what 
a model predicts would be prescribed, and dis-
crepancies could be flagged for review (e.g., 
other clinicians tend to order an alternative 
treatment that reflects new guidelines). How-
ever, a model trained on historical data would 
learn only the prescribing habits of physicians, 
not necessarily the ideal practices. To learn which 
medication or therapy should be prescribed to 
maximize patient benefit requires either care-
fully curated data or estimates of causal effects, 
which machine-learning models do not neces-
sarily — and sometimes cannot with a given 
data set — identify.

Traditional methods used in comparative ef-
fectiveness research and pragmatic trials54 have 
provided important insights from observational 
data.55 However, recent attempts at using ma-
chine learning have shown that it is challenging 
to generate curated data sets with experts, up-
date the models to incorporate newly published 
evidence, tailor them to regional prescribing 
practices, and automatically extract relevant vari-
ables from EHRs for ease of use.56

Machine learning can also be used to auto-
matically select patients who might be eligible 
for randomized, controlled trials on the basis of 
clinical documentation57 or to identify high-risk 
patients or subpopulations who are likely to 
benefit from early or new therapies under study. 
Such efforts can empower health systems to 
subject every clinical scenario for which there is 
equipoise to more rigorous study with decreased 
cost and administrative overhead.54,58,59

Clinician Workflow

The introduction of EHRs has improved the 
availability of data. However, these systems have 
also frustrated clinicians with a panoply of check-
boxes for billing or administrative documenta-
tion,60 clunky user interfaces,61,62 increased time 
spent entering data,63-66 and new opportunities 
for medical errors.67

The same machine-learning techniques that 
are used in many consumer products can be 
used to make clinicians more efficient. Machine 
learning that drives search engines can help 
expose relevant information in a patient’s chart 
for a clinician without multiple clicks. Data en-
try of forms and text fields can be improved 
with the use of machine-learning techniques 
such as predictive typing, voice dictation, and 
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automatic summarization. Prior authorization 
could be replaced by models that automatically 
authorize payment based on information already 
recorded in the patient’s chart.68 The motivation 
behind adopting these abilities is not just conve-
nience to physicians. Making the process of view-
ing and entering the most clinically useful data 
frictionless is essential to capturing and record-
ing health care data, which in turn will enable 
machine learning to help give the best possible 
care to every patient. Most importantly, increased 
efficiency, ease of documentation, and improved 
automated clinical workflow would allow clini-
cians to spend more time with their patients.

Even outside the EHR system, machine-learn-
ing techniques can be adapted for real-time 
analysis of video of the surgical field to help 
surgeons avoid critical anatomical structures or 
unexpected variants or even handle more mun-
dane tasks such as accurate counting of surgical 
sponges. Checklists can prevent surgical error,69 
and unstinting automated monitoring of their 
implementation provides additional safety.

In their personal lives, clinicians probably use 
variants of all these forms of technology on their 
smartphones. Although there are retrospective 
proof-of-concept studies of application of these 
techniques to medical contexts,15 the major bar-
riers to adoption involve not the development of 
models but technical infrastructure; legal, pri-
vacy, and policy frameworks across EHRs; health 
systems; and technology providers.

Expanding the Availability of Clinical 
Expertise

There is no way for physicians to individually 
interact with all the patients who may need care. 
Can machine learning extend the reach of clini-
cians to provide expert-level medical assessment 
without personal involvement? For example, pa-
tients with new rashes may be able to obtain a 
diagnosis by sending a picture that they take on 
their smartphones,32,33 thereby averting unneces-
sary urgent-care visits. A patient considering a 
visit to the emergency department might be able 
to converse with an automated triage system and, 
when appropriate, be directed to another form 
of care. When a patient does need professional 
assistance, models could identify physicians 
with the most relevant expertise and availability. 
Similarly, to increase comfort and lower cost, 

patients who otherwise may need to be hospital-
ized could stay at home if machines can remotely 
monitor their sensor data.

The delivery of insights from machine learn-
ing directly to patients has become increasingly 
important in the areas of the world where access 
to direct medical expertise is in limited supply70 
and sophistication. Even in areas where the sup-
ply of expert clinicians is abundant, these clini-
cians are concerned about their ability and the 
effort required to provide timely and accurate 
interpretation of the tsunami of patient-driven 
digital data from sensor or activity-tracking de-
vices worn by patients.71 Indeed, one of the hopes 
with regard to machine-learning models trained 
with data from millions of patient encounters is 
that they can equip health care professionals with 
the ability to make better decisions. For in-
stance, nurses might be able to take on many 
tasks that are traditionally performed by doc-
tors, primary care doctors might be able to per-
form some of the roles traditionally performed 
by medical specialists, and medical specialists 
could devote more of their time to patients who 
would benefit from their particular expertise.

A variety of mobile apps or Web services that 
do not involve machine learning have been shown 
to improve medication adherence72 and control 
of chronic diseases.73,74 However, machine learn-
ing in direct-to-patient applications is hindered 
by formal retrospective and prospective evalua-
tion methods.75

K e y Ch a llenges

Availability of High-Quality Data

A central challenge in building a machine-learn-
ing model is assembling a representative, diverse 
data set. It is ideal to train a model with data 
that most closely resemble the exact format and 
quality of data expected during use. For instance, 
for a model that is intended to be used at the 
point of care, it is preferable to use the same 
data that are available in the EHR at that par-
ticular moment, even if they are known to be 
unreliable46 or subject to unwanted variability.46,76 
When they have large enough data sets, modern 
models can be successfully trained to map noisy 
inputs to noisy outputs. The use of a smaller set 
of curated data, such as those collected in clini-
cal trials from manual chart review, is subopti-
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mal unless clinicians at the bedside are expected 
to abstract the variables by hand according to 
the original trial specifications. This practice 
might be feasible with some variables, but not 
with the hundreds of thousands that are avail-
able in the EHR and that are necessary to make 
the most accurate predictions.41

How do we reconcile the use of noisy data 
sets to train a model with the data maxim “gar-
bage in, garbage out”? Although to learn the 
majority of complex statistical patterns it is 
generally better to have large — even noisy — 
data sets, to fine-tune or evaluate a model, it is 
necessary to have a smaller set of examples with 
curated labels. This allows for proper assess-
ment of the predictions of a model against the 
intended labels when there is a chance that the 
original ones were mislabeled.21 For imaging 
models, this generally requires generating a 
“ground truth” (i.e., diagnoses or findings that 
would be assigned to an example by an infallible 
expert) label adjudicated by multiple graders for 
each image, but for nonimaging tasks, obtaining 
ground truth may be impossible after the fact if, 
for example, a necessary diagnostic test was not 
obtained.

Machine-learning models generally perform 
best when they have access to large amounts of 
training data. Thus, a key issue for many uses 
of machine learning will be balancing privacy 
and regulatory requirements with the desire to 
leverage large and diverse data sets to improve 
the accuracy of machine-learning models.

Learning from Undesirable Past Practices

All human activity is marred by unwanted and 
unconscious bias. Builders and users of machine-
learning systems need to carefully consider how 
biases affect the data being used to train a 
model77 and adopt practices to address and 
monitor them.78

The strength of machine learning, but also 
one of its vulnerabilities, is the ability of models 
to discern patterns in historical data that hu-
mans cannot find. Historical data from medical 
practice indicate health care disparities in the 
provision of systematically worse care for vul-
nerable groups than for others.77,79 In the United 
States, the historical data reflect a payment sys-
tem that rewards the use of potentially unneces-
sary care and services and may be missing data 

about patients who should have received care but 
did not (e.g., uninsured patients).

Expertise in Regulation, Oversight,  
and Safe Use

Health systems have developed sophisticated 
mechanisms to ensure the safe delivery of phar-
maceutical agents to patients. The wide applica-
bility of machine learning will require a similar-
ly sophisticated structure of regulatory oversight,80 
legal frameworks,81 and local practices82 to en-
sure the safe development, use, and monitoring 
of systems. Moreover, technology companies will 
have to provide scalable computing platforms to 
handle large amounts of data and use of models; 
their role today, however, is unclear.

Critically, clinicians and patients who use 
machine-learning systems need to understand 
their limitations, including instances in which a 
model is not designed to generalize to a particular 
scenario.83-85 Overreliance on machine-learning 
models in making decisions or analyzing images 
may lead to automation bias,86 and physicians 
may have decreased vigilance for errors. This is 
especially problematic if models themselves are 
not interpretable enough for clinicians to iden-
tify situations in which a model is giving incor-
rect advice.87,88 Presenting the confidence inter-
val in a prediction of a model may help, but 
confidence intervals themselves may be inter-
preted incorrectly.89,90 Thus, there is a need for 
prospective, real-world clinical evaluation of 
models in use rather than only retrospective as-
sessment of performance based on historical 
data sets.

Special consideration is needed for machine-
learning applications targeted directly to patients. 
Patients may not have ways to verify that the 
claims made by a model maker have been sub-
stantiated by high-quality clinical evidence or 
that a suggested action is reasonable.

Publications and Dissemination of Research

The interdisciplinary teams that build models 
may report results in venues that may be unfamil-
iar to clinicians. Manuscripts are often posted 
online at preprint services such as arXiv and 
bioRxiv,91,92 and the source code of many models 
exists in repositories such as GitHub. Moreover, 
many peer-reviewed computer science manu-
scripts are not published by traditional journals 
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but as proceedings in conferences such as the 
Conference on Neural Information Processing 
Systems (NeurIPS) and the International Confer-
ence on Machine Learning (ICML).

Conclusions

The accelerating creation of vast amounts of 
health care data will fundamentally change the 
nature of medical care. We firmly believe that the 
patient–doctor relationship will be the corner-
stone of the delivery of care to many patients 
and that the relationship will be enriched by 
additional insights from machine learning. We 
expect a handful of early models and peer-reviewed 
publications of their results to appear in the next 
few years, which — along with the development 
of regulatory frameworks and economic incen-
tives for value-based care — are reasons to be 
cautiously optimistic about machine learning 
in health care. We look forward to the hopefully 

not-too-distant future when all medically rele-
vant data used by millions of clinicians to make 
decisions in caring for billions of patients are 
analyzed by machine-learning models to assist 
with the delivery of the best possible care to all 
patients.

A 49-year-old patient takes a picture of a rash 
on his shoulder with a smartphone app that rec-
ommends an immediate appointment with a der-
matologist. His insurance company automatically 
approves the direct referral, and the app schedules 
an appointment with an experienced nearby der-
matologist in 2 days. This appointment is auto-
matically cross-checked with the patient’s per-
sonal calendar. The dermatologist performs a 
biopsy of the lesion, and a pathologist reviews the 
computer-assisted diagnosis of stage I melanoma, 
which is then excised by the dermatologist.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.
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